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Discussion

Discussion

Marissa C. Ashner1  and F. Jay Breidt2

We appreciate the opportunity to comment on this excellent article of Kim and Morikawa (henceforth KM). 
The importance of the class of problems described in this article is growing and the extensions outlined 
here, especially the combination of voluntary samples with probability samples, are essential in modern 
survey practice. In our experience, obtaining high-quality and timely probability samples of sufficient size 
for reasonable inferences can be extremely difficult, requiring tremendous resources to screen for rare 
populations, increase response rates, or deal with complex measurement issues. Survey analysts are thus 
increasingly faced with the need to use information from non-probability ‘samples’, which arise in various 
uncontrolled ways. They are often obtained from some voluntary self-selection mechanism like those 
emphasized here, but the framework of this article also covers various scenarios such as capture in 
administrative transactions or sensor records that were not designed to study the phenomenon of interest.

We found it instructive to work through the details of KM using a simple, discrete version of their 
framework. Consider a finite population consisting of N elements, denoted U = {1, 2, . . . , i, . . . , N}. For 
i ∈ U, let xi and yi denote binary random variables, each taking values in {0, 1}. As a concrete example, 
xi is voter i’s choice of candidate in a previous two-party election (from party 0 or party 1), with known 
election outcome X N xN i U i� �

��1  for candidate 1, and yi is voter i’s choice in an upcoming election. 
The votes are highly correlated across elections, but some voters switch parties. The parameter of interest 
is � � ��

�N yi U i
1 , the unknown outcome for the upcoming election. We require xi known for i ∈ S and 

XN  known, but do not require xi known for all i ∈ U.
Let δi = 1 if voter i responds and 0 otherwise. The correctly specified propensity to respond is

� � � � � �( ; ) ( , ; ) exp .y P x y y� � � � �� �� ��1 1 0 1
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Selection is thus non-ignorable: previous voting behaviour is predictive of response (because x is 
predictive of y), but current voting intentions are more important. While the specification is parametric, 
it is just a reparameterization of the discrete probability distributions identifiable from the available data.
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From equation (6) of KM, the observed likelihood of ϕ is a function of π(yi; ϕ) for δi = 1 and of 
� � � �x P xi i i; ;� � � �� �1 �  for δi = 0, where (using the Pfeffermann–Sverchkov trick noted in (7) of KM)
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In (1), the conditional probability distribution for y at each level of x corresponds to the model f (y | x, δ = 1) 
in KM. To obtain � �( ; )x  in (9) of KM, we estimate these conditional probabilities using the respondent 
data:
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for j = 0, 1, where 1(xi = j) = 1 if xi = j and 0 otherwise. Following equation (8) of KM, we then maximize
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noting that the second term only requires the population counts of xi = 0 and xi = 1, not the individual xi’s.
In this setting, we might also consider the instrumental calibration estimator (see Lesage et al.[1] and the 
references therein) with linear weighting, which in this case yields weights calibrated to N and i U ix�� ,
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We conducted a small simulation experiment (with 500 replicates) in the setting described above, with 
P (x = 1) = 0.47, P (y = 1 | x = 0) = 0.05, P (y = 1 | x = 1) = 0.97, π(0; ϕ) = P (δ = 1 | y = 0) = 0.3, and 
π(1; ϕ) = P (δ = 1 | y = 1) = 0.6, with N = 20, 000 and expected voluntary sample size of 8,894.4. We 
compared the naive estimator of the y-mean, the post-stratified estimator that controls on the count for 
the categories of x, the empirical likelihood estimator of KM, and the instrumental calibration 
estimator. As expected, the naive estimator ignores selection and is badly biased. The post-stratified 
estimator corrects some of the bias because x is predictive of y, but not all the bias because selection 
is non-ignorable. The empirical likelihood estimator corrects nearly all of the bias and the KM variance 
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estimator is nearly unbiased. The instrumental calibration estimator performs best in this limited 
simulation, with slightly larger variance but smaller bias than the empirical likelihood estimator.

Like our illustrative example, many practical survey problems are categorical and model specification 
for the propensity or the outcome amounts to conditional probabilities in low-dimensional tables. We are 
interested in the authors’ thoughts on any special considerations for such categorical problems. Even in 
this simple example, the linearization variance estimation approach in KM section 4 is complex and 
prone to analytic or coding errors. Practitioners would greatly benefit if the authors provided code or 
suggested replication approaches. Another practical consideration is ‘generic’ weights that can be applied 
across all study variables, such as cases M1 and M2 in the authors’ simulation experiment. How might a 
single, compromise set of weights be constructed when different variables are subject to different kinds 
of non-ignorable selection? Finally, we are interested in the authors’ thoughts on the relative strengths 
and weaknesses of empirical calibration versus instrumental calibration in the context of this article.
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